Boundary rigidity for free product C∗-algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projections in Free Product C {algebras

Consider the reduced free product of C {algebras, (A; ') = (A 1 ; ' 1) (A 2 ; ' 2), with respect to states ' 1 and ' 2 that are faithful. If ' 1 and ' 2 are traces, if the so{called Avitzour conditions are satissed, (i.e. A 1 and A 2 are not \too small" in a speciic sense) and if A 1 and A 2 are nuclear, then it is shown that the positive cone, K 0 (A) + , of the K 0 {group of A consists of tho...

متن کامل

Projections in free product C*-algebras, II

Let (A; ') be the reduced free product of innnitely many C {algebras (A ; ') with respect to faithful states. Assume that the A are not too small, in a speciic sense. If ' is a trace then the positive cone of K 0 (A) is determined entirely by K 0 ('). If, furthermore, the image of K 0 (') is dense in R, then A has real rank zero. On the other hand, if ' is not a trace then A is simple and purel...

متن کامل

Product of derivations on C$^*$-algebras

Let $mathfrak{A}$ be an algebra. A linear mapping $delta:mathfrak{A}tomathfrak{A}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{A}$. Given two derivations $delta$ and $delta'$ on a $C^*$-algebra $mathfrak A$, we prove that there exists a derivation $Delta$ on $mathfrak A$ such that $deltadelta'=Delta^2$ if and only if either $delta'=0$ or $delta=sdel...

متن کامل

A Note on Rigidity for Crossed Product Von Neumann Algebras

In this note, we will point out, as a corollary of Popa’s rigidity theory, that the crossed product von Neumann algebras for Bernoulli shifts cannot have relative property T. This is an operator algebra analogue of the theorem shown by Neuhauser and Cherix-Martin-Valette for discrete groups. Our proof is different from that for groups.

متن کامل

Hyperbolic Group C-algebras and Free-product C-algebras as Compact Quantum Metric Spaces

Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We show that if G is a hyperbolic group and if l is a word-length function on G, then the topology from this metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2018

ISSN: 0024-6093

DOI: 10.1112/blms.12180